基于FPGA的面阵CCD驱动电路的设计

分享到:

        0 引言

  CCD(Charge Coupled Devices)电荷耦合器件是20世纪70年代初发展起来的新型半导体集成光电器件。近30年来,CCD器件及其应用技术的研究取得飞速进展,特别是在图像传感和非接触测量领域的发展尤为迅速,它具有噪声低、光谱响应宽、精度和灵敏度高、可靠性好等优点。CCD成像系统主要由光学系统、驱动电路、信号处理电路和图像处理电路组成。

  本文主要介绍CCD传感器驱动电路的设计,包括驱动时序产生电路、电源变换电路和驱动器电路。其中,驱动时序产生电路向CCD传感器提供正常工作所需要的各种时序脉冲;电源变换电路向CCD提供正常工作时所需的各种直流偏置电压;驱动器电路用来提高驱动时序的驱动能力。

  l CCD驱动时序电路的要求及实现

  1.1 CCD图像传感器TH7888A

  CCD图像传感器采用ATMEL公司的TH7888A。它是一种高性能的帧转移面阵CCD器件,提供单路和双路两种输出方式,输出数据速率可达40 MHz,每秒30帧图像。TH7888A具有较低的暗电流及像元读出噪声,可用电子快门来调节曝光时间,性能优异。TH7888A由感光区,存储区和水平移位寄存器构成,有效像元数为1 024×1 024个。

  CCD的一个工作周期可分为两个阶段:光积分阶段和电荷转移阶段。光积分阶段进行感光阵列的电荷积累,存储区到转移寄存器的电荷转移(行逆程)以及转移寄存器向输出放大器的电荷输出(行正程);转移阶段主要进行帧转移,即将感光区的光积分电荷转移至存储区。要完成如上功能就要给CCD提供严格的驱动时序时钟。TH7888A的各驱动时序关系如图1所示。

 

  图1中,φPA为帧时钟,高电平时为光积分阶段,低电平时为电荷转移阶段。φP1~φP4为帧转移脉冲,在光积分阶段时不变,在电荷转移阶段时同行转移控制信号φM1~φM4一起完成整帧的转移。在光积分阶段,行逆程状态时,帧存储区各行的信号电荷在行转移信号φM1,φM4控制下向水平移位寄存器方向平移一行,读出寄存器时钟φL1,φL2不变;行正程状态时,水平移位寄存器中的像元电荷在读出寄存器时钟φL1,φL2的控制下逐次经过输出放大器输出。每读出一行信号,进行一次行转移。一帧图像传完后,再进行下一帧图像的帧转移。

  1.2 基于FPGA的CCD驱动时序的实现

  可编程逻辑器件FPGA具有集成度高、速度快、可靠性好及硬件可编程的特点,开发灵活、易于维护、非常适合CCD驱动的设计。设计选用的是Xilinx公司Spartan3系列的XC3S50,在分析CCD驱动时序关系的基础上,采用硬件编程语言VHDL编写,开发软件为ISE 10.1。

  程序输入为40 MHz主时钟CLK,由外部晶振提供,输出为十三路驱动信号。设计采用单路输出的方式,输出数据速率选为10 MHz。使用全部1 024×1 024个有效像元,在水平方向上,有效像元加上隔离元、黑参考元等共1 056个像元。在垂直方向上有效像元加上哑像元、黑参考元等共1 056行。进行适量冗余设计,再考虑帧转移和行转移所占用的时间,帧频为每秒8帧。复位时钟OR由主时钟四分频得到。由于CCD各驱动信号间要严格地满足时序关系,且波形比较复杂,程序采用多进程,多计数器循环嵌套的方式实现。帧时钟φA为最外部循环,在光积分阶段,由行逆程和行正程组成第一部分内循环,由主时钟分频、计数设计完成,同时产生行脉冲信号,对行脉冲信号计数产生帧周期;在电荷转移阶段帧转移脉冲φP1~φP4(行转移控制信号φM1~φM4)组成第二部分内循环,信号间的时序关系由主时钟分频、移位实现。

  在设计上,需要注意以下两点:

  (1)帧转移脉冲φP1~φP4的占空比为5:3,因此先用一个八进制的计数器设计出占空比为5:3的脉冲,再由帧时钟φA的控制及移位操作来实现其严格的时序。

  (2)对于φA和φP1~φP4,手册上对其波形的边沿变化时间有限制,对于时间上限,由于信号从FPGA输出之后是通过驱动器EL7212驱动后送入CCD的,而EL7212输出波形的上升及下降时间的最大值已满足此上限要求;对于时间下限,可在CCD管脚附近增加电容和电阻调节波形边沿的陡峭度来满足要求。

  1.3 CCD驱动时序的仿真

  设计采用ISE 10.1自带的仿真工具对时序进行仿真,并对Xilinx公司的FPGA芯片XC3S50进行配置下载,通过功能仿真验证设计的可行性。驱动时序的仿真结果如图2,图3所示。

 

 

  由图可见,设计完成了CCD对驱动信号的要求。