ADC分类选择及其前端配置技术

分享到:

 

ADC作为数据采集系统中的转换器,它的应用包括了音频、工业流程控制、电源管理、便携式/电池供电仪表、PDA、测试仪器分析及测试仪表、医学仪表等领域。正因为它的用途如此广泛,所以作系统设计人员首先迂到是如何选择ADC,而选择ADC又必须了解它的分类与特征,在这基础上更要了解ADC前端设计技术,这样才能实现工控或检测系统的高可靠与高精度。本文将此作介绍分析。

 

1、基于架构的ADC分类

ADC按某架构分类有四大类,即Delta-Sigma( △∑ )ADC、逐次逼近型(SAR)ADC、大带宽△∑ADC及智能型ADC。在此仅对三类作分析。

 

1.1Delta-Sigma( △∑ )ADC

基本架构

△∑ADC由一个△∑调制器以及后序的数字抽样滤波器组成。 调制器由一个带DAC的反馈回路纽成,回路中包括了一个比较器及一个积分器。回路通过时钟同步。基本组成架构见图1所示。

 

图1

*特征

△∑转换器拥有非常高的分辨率,可理想的用于转换极宽频率范围(从直流到好几个MHz)的信号。在△∑ADC中,输入信号先通过一个调制器实现过采样,而后由数字滤波器所产生的、采样率较低的高分辨率数据流完成滤波及抽取。

 

△∑的架构模式允许牺牲分辨率来换取速度,或同时折衷换取速度及功耗。正是数据率、分辨率、功耗三者之间密切且不间断的联系,使得△∑转换器格外的灵活。在很多△∑转换器中,分辨率是可编程设定的,从而使单个器件能满足多个不同度量的需求。

 

△∑转换器对输入过采样,因而能在数字域完成大多数的反锯齿滤波。现代的超大型集成电路设计技术已经使得复杂数字滤波器的成本远低于同等的模拟滤波器。原来不同寻常的某些功能,诸如对50Hz及60Hz的带阻滤波,现在已经内置到很多的△∑ADC之中。

 

△∑转换器的运作有别于逐次逼近型(SAR)转换器。SAR转换器获得输入电压的一个“映像”,通过对“映像”的分析决定响应的数字代码。而△∑测量的是一段确定时间的输入信号,其输出响应的数字代码是根据信号的时间平均得来的。对于△∑的工作方式有清晰的认识是很重要的,特别是对于设计中包含多路复用技术及同步的情况。

 

对多个△∑转换器的同步并不困难,因此很容易实现多个转换器的同时刻采样,而比较困难的则是实现△∑转换器与外部事件的同步。△∑转换器还对系统时钟抖动(CIock iftter)有极高的抵抗能力。其过采样功能有效的平均了抖动,降低了其噪声影响。

 

*应用

△∑的典型高精度应用包括了音频、工业流程控制、分析及测试仪表、医学仪表。

 

近期ADC架构领域的革新带来了新一代的ADC架构,此架构同时采用了流水线及过采样率准则。因此,超高速转换器将数据率推向了MSP5(百万抽样率每秒)的级别,同时保持了16位甚至更高的精度。这样的速度支持了众多最新的大带宽信号处理应用,例如通信及医学成像。

 

1.2大带宽△∑ADC特征

大带宽△∑ADC具有非常高的分辨率,可转换覆盖极宽频率范围的信号--从直流至若干MHz。采用此类ADC的系统将得益于其高速、高精度性能以及大带宽(直流至5MHz)。此类ADC采用了多级的调制器架构,从而提供了优异的内在稳定性,并通过降低过采样率(OSR)提高了信号量化噪声比(SQNR)。此外,该高速的△∑转换器具有非常强的系统时钟抖动耐受性。过采样的操作弱化了抖动,降低了噪声的影响。速度及精度的结合可支持大带宽信号处理的应用。以用于生物医学、台架(bench)测试和测量以及通信应用中先进的科学仪表。

 

1.3逐次逼近型(SAR)ADC

*基本架构

在SARADC内部。数位是由单个高速、高准确度比较器一位一位确定的,从MSB/最高有效㈣到LSB/最低有效62)。比较的坌过程是通过模拟输入信号与DAC的输出比较.而后根据比较结果。在DAC输出端先前确定的数位的基础上不断的调整,使DAC输出信号逐步逼近模拟信号.并最终完成转换。基本组成架构见图2所示。

 

图2