基于人脸识别的三维骨骼模型构造

分享到:

摘要:传统的人脸识别方法,都是基于人脸的二维与非刚性编码技术,存在着较为明显的缺陷。因此,提出一种三维人脸骨骼识别框架,主要解决了三维人脸姿态的规范化。实验表明,可以有效地提高人脸的识别率。
关键词:人脸骨骼识别;测地距离;PCA

0 引言
    当前的人脸识别系统,采用了多种不同的构造模型。如主流构造模型有基于器官的方法和基于模板的方法来构造模型,但它们都存在一个共同的特点,就是构造的对象都非刚性,必然受到光照、表情、服饰或其它遮隐物的影响,计算复杂,识别率不高。本文提出了一种采用骨骼模型构造三维人脸模型的方式,构造的对象是刚性物体,克服了人脸形变所带来的识别率不高的问题。

1 人脸骨骼模型的获取
    现在,国外有许多X光机,可以直接拍摄人脸的三维骨骼,如图1所示,就是X光机拍摄到的人体骨骼。


    为了获取人脸的三维骨骼模型,将人脸骨骼切割出来。利用三维人脸骨骼所有顶点以及顶点方向分布,将三维人脸骨骼顶点集合设定为最小二乘拟合平面。
    在最小二乘拟合平面中,首先定位出原始模型的鼻尖骨点,然后按照测地距离度量,切割原始三维人脸骨骼模型,得到三维人脸骨骼模型,最后估计三维人脸骨骼模型姿态,并将其旋转至规范的正面姿态。
1.1 定位鼻尖点
    为了定位三维人脸模型,必须先确定某点为参考点。对给定的人脸骨骼,利用最小二乘方法拟合一个过人脸骨骼模型所有顶点的平面,如图2所示。


    将人脸骨骼切割为两部分,在位于最小拟合二乘平面上的那部分点集中寻找距离最小二乘拟合平面最远的顶点,记为三维人脸模型的鼻尖点。
    在定位了三维人脸骨骼模型之后,需要对原始模型做处理,定位出提取识别中起关键作用的面部骨骼区域,以便于人脸规范化与后续的比对处理。